a2 United States Patent

Gerwig et al.

US009207706B2

(10) Patent No.: US 9,207,706 B2
(45) Date of Patent: Dec. 8, 2015

(54) GENERATING MONOTONICALLY
INCREASING TOD VALUES IN A
MULTIPROCESSOR SYSTEM

(71) Applicant: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

(72) Inventors: Guenter Gerwig, Simmozheim (DE);
Christian Jacobi, Poughkeepsie, NY
(US); Frank Lehnert, Weil im
Schoenbuch (DE); Chung-Lung K.
Shum, Wappingers Falls, NY (US);
Timothy J. Slegel, Staatsburg, NY (US)

(73) Assignee: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 362 days.

(21) Appl. No.: 13/905,772

(22) Filed: May 30, 2013

(65) Prior Publication Data
US 2013/0326256 Al Dec. 5, 2013

(30) Foreign Application Priority Data
May 30,2012 (GB) woeveceeecrceciecineenene 1209548.5
(51) Imt.ClL
GO6F 1/12 (2006.01)
GO6F 1/14 (2006.01)
GOSF 1/573 (2006.01)
(52) US.CL

CPC .. GOG6F 1/12 (2013.01); GO6F 1/14 (2013.01);
GO5F 1/573 (2013.01)

100_‘

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

7,681,064 B2 3/2010 Engler et al.

2003/0101365 Al* 5/2003 Elkoetal. 713/500
2006/0031702 Al 2/2006 Jardine et al.
2008/0071502 Al* 3/2008 Checketal. 702/186

2009/0300401 Al 12/2009 Engler et al.

FOREIGN PATENT DOCUMENTS

EP 0267612 A2 5/2008
JP 559114664 A 7/1984

* cited by examiner

Primary Examiner — Paul Yanchus, 111
Assistant Examiner — Joshua Neveln

(74) Attorney, Agent, or Firm — Margaret McNamara, FEsq.;
Blanche E. Schiller, Esq.; Heslin Rothenberg Farley & Mesiti
P.C.

(57) ABSTRACT

Generating monotonically increasing time-of-day values in a
multiprocessor system is provided. Synchronization
impulses are received by a processor of the multiprocessor
system, and an execution of a read instruction of a time-of-
day value within a processor of the processors is refused, if
the execution of the read instruction of the time-of-day value
is requested after a predefined time after a synchronization
impulse of the synchronization impulses, and if a trigger
signal, indicative of new data received by a related memory
system, has been received after the predefined time, wherein
the memory system is external to the processor.

20 Claims, 4 Drawing Sheets

102 generating synchronization impulses for all
processors of the multiprocessor system

104 refusing an execution of a read instruction of
a TOD value based on a joint condition

U.S. Patent Dec. 8, 2015

100\<

Sheet 1 of 4

US 9,207,706 B2

102 generating synchronization impulses for all
processors of the multiprocessor system

104 refusing an execution of a read instruction of
a TOD value based on a joint condition

FIG. 1
200\4
L3 202 L3 212 L3 222
204 (| 206 214 (| 216 224 || 226
208 ||210 218 || 220 228 || 230
L4 262
L3 232 L3 242 L3 252
234 || 236 244 | | 246 254 | | 256
238 || 240 248 || 250 258 | | 260

U.S. Patent Dec. 8, 2015

N
(o)

204 e
CPU1 <~ CPUZ2

Load A <« |Shared
STCK B — | cache

FIG. 3

STCKA Load A STCKB

LI 2

120 cyl. >
STCK A loadA STCKB STCKB
o | []
120 cyl. -5

© |1]
<—120 cyl—s|
< 357 cycles ——

FIG. 4

Sheet 2 of 4 US 9,207,706 B2

U.S. Patent Dec. 8, 2015 Sheet 3 of 4 US 9,207,706 B2

shared cache 202

3
230 PU 504 528 | 502a 53
PLL £ |~ ~
y 510
synch. 514
impulse % TOD (_f’__ Y 512
532 ! 516 | ¢ | 506
unit ___ >
v 545 |refusing execution
520 unit > unit
o 5267 A
lcounter 504 518
clock > =
522

FIG. 5

U.S. Patent Dec. 8, 2015 Sheet 4 of 4 US 9,207,706 B2

/ 600
— 1| 802 MPU /—504
612 604
display 00007
memory OoOo0On
OO0O00
n
>
O
614
network
606 \/x
disk S
bulk storage)
\\\ \\<' \\ \\ \\
\\\\\\\\\618 "
\/\ NN N S\ 510
608

FIG. 6

US 9,207,706 B2

1
GENERATING MONOTONICALLY
INCREASING TOD VALUES IN A
MULTIPROCESSOR SYSTEM

PRIOR FOREIGN APPLICATION

This application claims priority from United Kingdom
patent application number 1209548.5, filed May 30, 2012,
which is hereby incorporated herein by reference in its
entirety.

BACKGROUND

One or more aspects of the invention relate generally to a
method for generating TOD (time-of-day) values. One or
more further aspects relate to a TOD synchronization system,
a computing system, a data processing program, and a com-
puter program product.

Today, computers or computing systems may include a
plurality of processors, each of which is capable of executing
one or more programs to digitally process a set of instructions
as part of a computer program. Certain programs require
exact time information for proper performance. This time
information is particularly called time-of-day (“TOD”). In
particular, a synchronization of monotonically increasing
timestamps is important. It is to be avoided that different
processors may generate non-monotonically TOD values.
Sometimes recorded TOD values are required by software
applications, e.g., full recording financial transactions. E.g.,
TOD clock records are commonly used to prevent financial
transactions from being executed simultaneously multiple
times against the same funds.

Thus, the software relies on the TOD to be unique and
strictly monotonically increasing. E.g., in the S/390 architec-
ture, an instruction called “STORE CLOCK” or “STCK”
may be used to record a TOD in a 64-bit (eight byte) field. For
uniqueness reasons of the TOD value across a multiprocessor
system, the low n bits may be replaced by a constant unique
CPU (central processing unit) number. A pulse may be dis-
tributed synchronously through the entire multiprocessor sys-
tem, such that bit 64-» of a counter may be increased. Ina 128
way multiprocessor system, seven bits are required to differ-
entiate their 128 CPUs of the multiprocessor system. Thus,
64-7 bits are left for the counter, resulting in bits 0:56, speak,
zero to 56. When a CPU reads the TOD it “sees” the current
value of'the TOD on bits 0:56 and the unique CPU number on
bits 57:63, wherein the most significant bit is bit zero. A
subsequent read may be blocked until the time pulse has
increased bit 56 of the TOD counter. This ensures (a) unique-
ness of processor identifiers across the entire processing sys-
tem (every CPU uses a different bit combination of the bits
57:63), and (b) it may ensure a monotonically increase of the
TOD values within each CPU.

However, the increasing number of processors in multipro-
cessor systems requires an increasing number of bits for
identifying a specific CPU. Thus, the remaining bits available
for the TOD counter decrease if the 64 bits in total remain
unchanged. This means that the accuracy of the TOD
counter—because of the reduced number of available bits for
the TOD counter—is decreasing. In addition to that the clock
speed of the individual processors may be increased. This
situation may lead to a conflict of TOD values generated by
different processors of the multiprocessor system—the TOD
may no longer monotonically be increased.

The following situation may point to the increasing prob-
lem: Both, CPU A and B, receive regular TOD impulses. CPU
B executes a STCK at time T1, and is writing a TOD value to

10

15

20

25

30

35

40

45

50

55

60

65

2

a memory external to both CPUs, e.g., a shared cache. If
shortly after T1, CPU A also executes a STCK instruction, its
TOD value may be lower than the value that has been written
to the shared memory by CPU B because of the unique CPU
number stored in bits 57:63 of the TOD value. The identifier
of CPU B may have a lower number than CPU A so that the
TOD value of CPU B may be lower even if bit 56 (see above)
is identical for both CPUs. This would lead to a non-mono-
tonically increasing TOD of the multiprocessor system,
which is to be avoided. However, this may only happen if the
time required to transport a TOD value from one CPU to
another is shorter than the precision of the TOD counter in a
CPU. Now, this counter has a decreasing number of bits
available, as discussed above. Hence, TOD value conflicts
may arise.

There are some disclosures related to methods for gener-
ating TOD values.

Document U.S. Pat. No. 7,681,064 B2, which is hereby
incorporated herein by reference in its entirety, discloses a
system, a method and a computer program product for steer-
ing a time-of-day (TOD) clock for a computer system having
a physical clock providing a time base for executing opera-
tions that is stepping to a common oscillator. The method
includes computing a TOD-clock offset value to be added to
a physical clock-value to obtain a logical TOD clock-value,
wherein the logical TOD clock-value is adjusted without
adjusting a stepping rate of the oscillator.

BRIEF SUMMARY

Therefore, there may be a need to overcome TOD conflicts
between an increasing number of CPUs within a multipro-
cessor system with increased CPU clock speed and improved
cache latency.

This need may be addressed by a method for generating
TOD values, a TOD synchronization system, a computing
system, a data processing program, and a computer program
product, according to one or more aspects of the independent
claims.

According to one embodiment, a method for generating
TOD values is provided. The method may comprise receiving
synchronization impulses—in particular, periodic synchroni-
zation impulses from a dedicated PLL (phase-locked-loop),
specifically for TOD impulses generated for all processors of
the multiprocessor system—and refusing an execution of a
read instruction of a time-of-day value within a processor of
the multiprocessor system, if the execution of the read
instruction of the time-of-day value is requested after a pre-
defined time after a synchronization impulse of the synchro-
nization impulses, and if a trigger signal, indicative of new
data received by a related memory system, has been received
after the predefined time, wherein the memory system is
external to the processor.

According to another embodiment, a TOD synchronization
system is provided, in particular, a time-of-day synchroniza-
tion system for generating monotonically increasing time-of-
day values in a multiprocessor system. The system may com-
prise an input unit adapted for receiving synchronization
impulses, in particular, those TOD synchronization impulses
that are generated for all processors of the multiprocessor
system, and a refusing unit adapted for refusing an execution
of'aread instruction of a time-of-day value within a processor
of'the processors, if the execution of the read instruction of the
time-of-day value may be requested after a predefined time
after a synchronization impulse of the synchronization
impulses, and if a trigger signal, indicative of new data

US 9,207,706 B2

3

received by a related memory system, has been received after
the predefined time, wherein the memory system is external
to the processor.

It may be noted that the trigger signal may indicate a TOD
value that may have been written to a memory system or
shared cache by another processor.

It may also be noted that today typical TOD impulses may
bein arange of 62.5 ns versus a clock speed of the processors
of about 200 ps (pico second). It may also be noted that the
mentioned “STCK” instruction may read the TOD value from
a TOD unit within each processor and may write it to a
memory, external to the processor, e.g., a cache, which may
be shared between several processors, e.g., a shared .2 or L3
cache, orhigher. Thirdly, a read of a TOD value may no longer
be refused if a new TOD impulse may have been received.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

Embodiments of the invention will now be described, by
way of example only, and with reference to the following
drawings:

FIG. 1 shows a block diagram of an embodiment for gen-
erating monotonically increasing time-of-day values;

FIG. 2 shows elements of a multiprocessor system;

FIG. 3 shows a diagram detailing the problem to be solved;

FIGS. 4(a), (b), (¢) show a conflicting situation for TOD
values and its resolution;

FIG. 5 shows a block diagram of a TOD synchronization
system; and

FIG. 6 shows an example of a computer system comprising
the TOD synchronization system in processors of a central
multiprocessor system.

DETAILED DESCRIPTION

The synchronization for TOD purposes between the pro-
cessors may be performed by periodic synchronization
impulses from a dedicated PLL (phase-locked-loop) genera-
tor, specifically for TOD impulses. It may also be useful to
recognize that the trigger signal indicative of new data
received in a shared or cache memory external to the proces-
sor may signal that another CPU may have written a TOD
value to a shared memory. But, it may also be another value of
something else.

In the context of this application, the following conven-
tions may be followed:

Multiprocessor—The term multiprocessor may indicate a
processor comprising several CPUs, kernels or processing
units. All CPUs may operate and execute different program
codes independently. However, they also are to be synchro-
nized, in particular, in terms of their TOD signals. Typically,
all CPUs may receive the same system clock signals, i.e., they
may all operate with the same base clock. However, TOD
synchronization impulses and clock impulses may be com-
pletely different. Typically, the clock speed is much faster
than TOD impulses.

Time-of-day values—A TOD value typically consists of a
TOD counter having a certain granularity, i.e. a dedicated
number of bits, and a unique CPU number. This term may
denote unique time signals. The TOD values should be mono-
tonically increasing. This may mean that a TOD value written
at atime T1 should be lower than a TOD value of a time T2 if
T1<T2.

Synchronization impulse—The term synchronization
impulse may denote a regular impulse generated by a dedi-
cated clock circuit and fed to all TOD counters in each pro-

25

30

35

40

45

55

4

cessor of the multiprocessor system. Typically, a specific PLL
circuit may be responsible for generating these regular syn-
chronization or TOD impulses.

Trigger signal—The term trigger signal may denote a sig-
nal that may be sent out on a certain condition. E.g., a cache
memory system may issue a trigger signal, if any data stored
in the cache memory may have been changed. In another
example, the cache memory may have received new data.
However, these data may be identical to the data stored
before. These data may also include a TOD value that may
have been written by another processor to the shared cache
memory.

Shared cache—The term shared cache may denote a
memory system to and from which several processors, cores
or processing units may write or read data values. Thus, a
shared cache may be jointly accessible by the processors, in
particular, in a multiprocessor system.

TOD counter—The term TOD counter may denote a
counter that may be implemented within each CPU of the
multiprocessor system. [t may increase its value—namely its
count—on every signal of the synchronization impulses. The
TOD counter may be able to generate time marks with every
impulse the TOD counter receives. Two successive TOD val-
ues may indicate the smallest amount of time that may be
distinguishable by an application program using the proces-
sors of the multiprocessor system.

Counter—The term counter may denote a counting unit
that may increase its value stored in it by impulse, e.g., a clock
impulse. It may be differentiated from the TOD counter.

Reject flag—The term reject flag may denote a flag that is
set in order to avoid a reading of a TOD counter value or
simply TOD value.

One or more aspects of generating TOD values may offer a
couple of advantages:

One or more aspects of the provided method and the related
system may guarantee that not any two processors in a mul-
tiprocessor system may generate identical TOD values at
different times. A count of a synchronization impulse may be
restricted to longer and longer time periods because ina TOD
value, restricted to a 64-bit word, more and more bits may be
reserved for identifying an increasing number of processors.
A new added interlock mechanism between the TOD logic
and the cache logic may monitor when a processor is observ-
ing data changes or newly received data in a shared cache
memory. Such a data change, or receipt of new data, may
potentially be a result of a STCK instruction of another pro-
cessor, wherein the STCK instruction is both, a read and a
write operation, in particular, a read from the TOD unit and a
write to the memory. By one or more aspects of the provided
mechanism, the reading of the TOD—and thus, the writing of
aTOD value to the shared cache memory—is deferred until a
new TOD impulse has been received.

Hence, one or more aspects of the proposed method pre-
vent one CPU observing, that is reading from cache, a TOD,
storing it, transferring an indication of the TOD-observation
to another CPU, then observing the TOD ofthe other CPU, all
while no increase of the TOD counter happens.

According to one embodiment, the predefined time is
determined based on a smallest latency, a data value—e.g., a
potential TOD value—is transferable from one processor to
another processor in the multiprocessor system. Such a trans-
fer may be performed using an [.2, L3 or higher (L=level x)
shared cache memory, to which both involved processors may
have write access.

Another embodiment further comprises increasing a
counter, e.g., within the processor—on every processor cycle
time and resetting the counter, e.g., to zero, upon reception of

US 9,207,706 B2

5

a synchronization impulse. A skilled person understands that
the period of the processor cycle time is different, in particular
shorter if compared to the period of the synchronization
impulses. Thus, the processor operates at a higher frequency
than the synchronization impulses may be generated. In the
above mentioned example, the synchronization impulse may
be, e.g., 62.5 ns, while the processor cycle time may be, e.g.,
about 200 ps or less. The resetting may be performed to a
value of zero, such that after each reset of the counter, the
counter may start from zero with its count and increase its
count on every impulse from the processor clock.

According to again another embodiment, a time flag may
be set if a time after the synchronization impulses may be
reached that is equal or greater than the predefined time. The
predefined time is system dependent, e.g., dependent on
parameters like CPU type, technology used, processor clock,
cache latency, synchronization clock, number of processors,
etc. In other words, this time flag may be set according to the
following: if the execution of the read instruction of the time-
of-day value is requested after a predefined time after a syn-
chronization impulse of the synchronization impulses. It rep-
resents one part of the condition defined.

According to an alternative embodiment, the flag may be
reset, e.g. to zero, upon reception of a synchronization
impulse. Such a reset may symbolize the opening of a new
time window. It may also symbolize that the first part of the
above mentioned “if” condition has been reset.

According to one embodiment, the memory system or
shared cache is jointly accessible by the processor and
another processor in the multiprocessor system. A data
change in the memory system, i.e., reception of new or iden-
tical data, may, in particular, be a TOD value from another
CPU. The memory system may, in particular, be a L2, .3 or
higher shared cache assessible from two involved processors
of'the multiprocessor system. A single data value change, i.e.,
also a re-receipt of an existing data in the cache memory, may
trigger the trigger signal.

In a further embodiment, a reject flag may be set if the time
flag may have been set and the trigger signal may have been
received. This conditional setting of a reject flag may help to
control the combined setting of the conditions as set forth in
the general concept of the technique. It may guarantee that a
reception of the trigger signal may not be forgotten after the
trigger signal has been received and before a new synchroni-
zation impulse has been received. An actual reading of the
time-of-day value may be refused if the reject flag is set. Thus,
also the execution of a write of a TOD value may be sup-
pressed if the read and the write part of a “STCK” instruction
may be strictly linked to each other.

According to a further embodiment, the execution of the
read instruction of a time-of-day value may be rejected if the
reject flag is set. This feature allows for a comparable
elegantly implementable design of related hardware circuits.
Only a check of a set flag is required in order to stop a read of
a time-of-day value to avoid internal system conflicts.

In a further embodiment, the reject flag may be reset upon
reception of the synchronization impulse. Thus, a reception
of a synchronization impulse resets the complete method for
generating monotonically increasing time-of-day values in a
multiprocessor system or a related time-of-day synchroniza-
tion system. Everything is back to normal and the cycles may
start again.

In one embodiment, the read instruction of a time-of-day
value may also include a write instruction of a time-of-day
value. If a TOD read and write instruction—e.g., to a related
cache memory—may be combined into one instruction, the
total time for an execution of the complete instruction may be

10

15

20

25

30

35

40

45

50

55

60

65

6

reduced. Also, from a programming point of view, there may
be advantages. The writing of the TOD value may be directed
to a related cache that may be related to the processors of the
multiprocessor system. The combined instruction may be a
“STCK” instruction, as discussed above.

Inthe following, a detailed description of the figures will be
given. All instructions in the figures are schematic. Firstly, a
block diagram of an embodiment for generating TOD values
is given. Afterwards, further embodiments of the method and
the TOD synchronization system will be described.

FIG. 1 shows a block diagram of an embodiment of the
method 100 for generating monotonically increasing time-of-
day values in a multiprocessor system. The method 100 com-
prise generating, 102, synchronization impulses for all pro-
cessors of the multiprocessor system, and refusing, 104, an
execution of a read instruction of a time-of-day value within
a processor of the processors if the execution of the read
instruction of the time-of-day value is requested after a pre-
defined time after a synchronization impulse of the synchro-
nization impulses, and if a trigger signal indicative of new
data received by a related memory system, has been received
after the predefined time, wherein the memory system is
external to the processor.

FIG. 2 shows an embodiment of a multiprocessor 200 or
multiprocessor system. Here, six processing nodes are shown
in multiprocessor 200. Each node comprises a L3 cache 202,
212,222,232,242, 252 and four cores 204, 206, 208, 210 and
214, 216, 218, 220 and 224, 226, 228, 230 and 234, 236, 238,
240 and 244, 246, 248, 250, as well a 254, 256, 258, 260. All
nodes may optionally have access to a joint 1.4 cache 262.

FIG. 3 shows a diagram detailing the problem to be solved.
CPU2, or core2, or processing unit 2 206 may issue an STCK
instruction meaning that a TOD value A may be read from a
CPU-internal register and may be written to a shared cache
202. At a later point in time—the time flow is indicated by the
downwards directed arrow—CPU1 or corel 204 may load the
TOD value A from the shared cache 202 into a register of
CPU1 204. At an even later point in time CPU1 204 may also
execute a STCK instruction. This time, a later or higher value
of'a TOD is to be read from the CPU1-internal TOD register.

In case of 80 CPUs in a multiprocessor system, a 64 bit
TOD word-length and a CPU cycle time of 240 ps, this may
not be a problem. 80 CPUs need 7 bits to differentiate
between them and identify them. Hence 64 bits—7 bits=57
bits, bits 0:56, are available for a TOD counter. A TOD bit
increment on bit 56 may represent 32 ns. If a TOD step or
synchronization impulse may occur every 133 CPU cycles,
then a fastest store from one CPU or core propagating via a
load instruction on another CPU may take more than 133
processor cycles. CPU1 may have time enough to increase its
own TOD counter before observing the TOD value A of
CPU2. Thus, TOD B>TOD A and no problem may occur.

If, on the other side, other conditions may be given, and
TOD B>TOD A may not be guaranteed, indicating an internal
conflict in the multiprocessor system because the requirement
for monotonically increasing TOD values is hurt. Assumed
are now 144 CPUs in the multiprocessor system and a CPU
clock speed of 175 ps. In this configuration only 64 bits—8
bits=56 bits, or 0:55, are available for the TOD counter
because 8 bits are required to differentiate between 144 CPUs
(up to 256 CPUs). A TOD step impulse may now take 357
CPU cycles. A fastest store from one CPU in a shared cache
memory, propagating via a load instruction to another CPU
may take less than 357 CPU cycles (about 120 cycles). Hence,
TOD B<TOD A may be the result, indicating a systematical
conflict in the system.

US 9,207,706 B2

7

FIGS. 4(a), (b), (¢) show the conflicting situation and its
resolution by the proposed technique from another perspec-
tive. Assumptions made: The TOD value may be 64 bits long.
More than 128 processors are used, e.g., 144 processors.
Thus, 8 bits are required to differentiate between the proces-
sors. While bits 56:63 are used for processor identification,
bits 0:55 are reserved for the TOD counter. Hence, as an
example, an increase at the TOD counter happens at bit 55 of
the TOD word, every about Yis ps. This may represent the
shortest time interval of TOD counter values between syn-
chronization impulses. At a processor clock speed of 5.7
GHz, this represents 356.25 processor cycles.

On the other side, enhancements in cache design resulting
in lower cache latency and other improvements, a transfer of
a value—which may happen to be a TOD value—from one
processor to another processor may be achieved within about
120 processor cycles (FIG. 4(a)). This leads to the situation
that after a first synchronization impulse (compare also FIG.
4(c)) a “STCK A” may happen and another processor may
load that value by an instruction “Load A”. If now within the
same synchronization window—meaning that not a second
synchronization impulse has been received—a “STCK B” by
again another processor may be executed, resulting in a TOD
value in the cache, a lower “STCK B” TOD value may have
been written to the cache. This is to be avoided because of the
requirement of monotonically increasing TOD values. There-
fore, the first “STCK B” is to be suppressed, as indicated by
the crossed-through “STCK B” in part (b) of FIG. 4. Only
after a new synchronization impulse—which happens after
about 357 processor cycles (compare FIG. 4(c))—a new
“STCK B” may be allowed. This “STCK B” will generate a
higher TOD value, and thus, be in line with the above men-
tioned monotonically increasing TOD value requirement.
The “STCK B” execution may be delayed by refusing to read
the TOD value required for the “STCK B” instruction.
Because in a “STCK” instruction, a read command to the
TOD counter as well as a write command to the shared cache
memory are combined, also the write of the potentially
wrong, i.e., non-monotonically increasing TOD value—may
be suppressed.

FIG. 5 shows a block diagram of an embodiment of a TOD
synchronization system integrated into a core or processing
unit 504 of a multiprocessor system. It is assumed that execu-
tion unit 506 is in the process of executing an STCK instruc-
tion, thereby writing a TOD value via line 508 into a joint
cache 202 to which also other processing units may have
write access. Typically, the STCK instruction consists of two
parts. The first part requests the TOD value from the TOD unit
510 via lines 512, 514. This assumes that refusing unit 516 is
not present. The execution unit would request and receive the
TOD value via lines 512 and 518 from the TOD unit, again
assuming that no refusing unit is present. The TOD unit is
triggered with TOD synchronization impulses 532 by an
external oscillator, typically a dedicated PLL circuit 530. This
signal 532 goes to all processing units of the multiprocessor
system.

Under the above described circumstances, a read of the
TOD value is refused by the refusing unit 516, such that a read
of the TOD value is not possible until the circumstances as
explained above are met again. The refusing unit 516 receives
an input signal 502a from the cache 202 that a value has been
written to the cache 202 by another processing unit. This
value may be a TOD value from another processing unit;
however, it could also be any other value. But because of the
risk that it may be a TOD value from another processing unit
or core, a STCK of processing unit 506 is put on hold if the
conditions, as explained above are met. For this purpose, a

25

30

40

45

8

counter 520 is implemented. It receives clock impulses 522 or
impulses for defined processor cycles from the normal pro-
cessing unit clock. The counter is reset, in particular, to zero,
on any synchronization impulse 532. If the predefined time
required for transferring a data value from one processing unit
to another via cache 202 has elapsed, the counter 520 triggers
a latch 524 to set a time flag via line 526. The status of the
latch is also fed to the refusing unit 516. Here, the time flag
information may be combined with a trigger signal. A reject
flag may be set based on the set time flag and the trigger signal
coming in via line 502q, indicative of a data change in the
shared cache 202.

The latch 524 is also reset on any synchronization impulse
532, as well as a potentially set reject flag via line 528. If the
conditions, as explained above, are met, the refusing unit does
not allow a read of a TOD value from the TOD unit 510 via
line 514 and 515, respectively. Consequently, a write of a
TOD value to a related cache memory is not possible if the
read part of the instruction is directly linked to a write part of
the same instruction, e.g. a STCK instruction. Thus, mono-
tonically increasing TOD values written to the cache 202 may
be secured.

Embodiments of the invention may be implemented
together with virtually any type of computer, regardless of the
platform being suitable for storing and/or executing program
code. For example, as shown in FIG. 6, a computing system
600 may include a multiprocessor 602 with one or more
nodes, each with one or more cores 504. Such a multiproces-
sor may also be implemented in the form as described in the
context of FIG. 2. Each core may also comprise the TOD
synchronization system as well as related cache memory
structures as indicated by FIG. 5. Furthermore, the computing
system 600 may have associated memory elements 604, an
internal storage device 606 (e.g., a hard disk, an optical drive
such as a compact disk drive or digital video disk (DVD)
drive, a flash memory stick, etc.), and numerous other ele-
ments and functionalities, typical of today’s computers (not
shown). The memory elements 604 may include a main
memory, e.g., a random access memory (RAM), employed
during actual execution of the program code, and a cache
memory, which provides temporary storage of at least some
program code and/or data in order to reduce the number of
times, code and/or data must be retrieved from a long-term
storage medium or external bulk storage 616 for an execution.
Elements inside the computer 600 may be linked together by
means of a bus system 618 with corresponding adapters.

The computing system 600 may also include input
means—directly or indirectly attached—such as a keyboard
608, a pointing device, such as a mouse 610, or a microphone
(not shown). Alternatively, the computing system may be
connected to a touch sensitive screen as input device. Further-
more, the computer 600, may include output means, such as a
monitor system or screen 612 [e.g., a liquid crystal display
(LCD), a plasma display, a light emitting diode display
(LED), or cathode ray tube (CRT) monitor]. The computer
system 600 may be connected to a network (e.g., a local area
network (LAN), a wide area network (WAN), such as the
Internet or any other similar type of network, including wire-
less networks) via a network interface connection 614. This
may allow a coupling to other computer systems, or a storage
network, or a tape drive. Those, skilled in the art will appre-
ciate that many different types of computer systems exist, and
the aforementioned input and output means may take other
forms. Generally speaking, the computer system 600 may
include at least the minimal processing, input and/or output
means, necessary to practice embodiments of the invention.

US 9,207,706 B2

9

While the invention has been described with respect to a
limited number of embodiments, those skilled in the art,
having benefit of this disclosure, will appreciate that other
embodiments can be devised, which do not depart from the
scope of aspects of the invention, as disclosed herein. Accord-
ingly, the scope of aspects of the invention should be limited
only by the attached claims. Also, elements described in
association with different embodiments may be combined. It
should also be noted that reference signs in the claims should
not be construed as limiting elements.

As will be appreciated by one skilled in the art, one or more
aspects may be embodied as a system, method or computer
program product. Accordingly, aspects may take the form of
an entire hardware embodiment, an entire software embodi-
ment (including firmware, resident software, micro-code,
etc.) or an embodiment combining software and hardware
aspects that may all generally be referred to herein as a “cir-
cuit,” “module” or “system.” Furthermore, aspects may take
the form of a computer program product embodied in one or
more computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fibre, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fibre cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the

10

25

35

40

45

55

10

remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Embodiments may take the form of a computer program
product, accessible from a computer-usable or computer-
readable medium providing program code for use, by or in
connection with a computer or any instruction execution sys-
tem, or microcode. For the purpose of this description, a
computer-usable or computer-readable medium may be any
apparatus that may contain means for storing, communicat-
ing, propagating or transporting the program for use, by or in
a connection with the instruction execution system, appara-
tus, or device.

The medium may be an electronic, magnetic, optical, elec-
tromagnetic, infrared or a semi-conductor system for a propa-
gation medium. Examples of a computer-readable medium
may include a semi-conductor or solid state memory, mag-
netic tape, a removable computer diskette, a random access
memory (RAM), a read-only memory (ROM), a rigid mag-
netic disk and an optical disk. Current examples of optical
disks include compact-disk-read-only-memory (CD-ROM),
compact-disk-read/write (CD-R/W), DVD and Blu-Ray-
Disk.

It should also be noted that embodiments of the invention
have been described with reference to different subject-mat-
ters. In particular, some embodiments have been described
with reference to method type claims whereas other embodi-
ments have been described with reference to apparatus type
claims. However, a person skilled in the art will gather from
the above and the description herein that, unless otherwise
notified, in addition to any combination of features belonging
to one type of subject-matter, also any combination between
features relating to different subject-matters, in particular,
between features of the method type claims, and features of
the apparatus type claims, is considered as to be disclosed
within this document.

The aspects defined above and further aspects of the
present invention are apparent from the examples of embodi-
ments described herein and are explained with reference to
the examples of embodiments, but to which the invention is
not limited.

Aspects of the present disclosure are described with refer-
ence to flowchart illustrations and/or block diagrams of meth-
ods, apparatus (systems) and computer program products
according to embodiments of the present disclosure. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions, which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

US 9,207,706 B2

11

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions, which execute on the com-
puter or other programmable apparatus, provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

The block diagrams in the figures illustrate the architec-
ture, functionality, and operation of possible implementations
of systems, methods and computer program products accord-
ing to various embodiments of the present disclosure. In this
regard, each block in the block diagrams may represent a
module, segment, or portion of code, which comprises one or
more executable instructions for implementing the specified
logical function(s). It should also be noted that, in some
alternative implementations, the functions discussed herein-
above may occur out of the disclosed order. For example, two
functions taught in succession may, in fact, be executed sub-
stantially concurrently, or the functions may sometimes be
executed in the reverse order, depending upon the function-
ality involved. It will also be noted that each block of the
block diagrams, and combinations of blocks in the block
diagrams, can be implemented by special purpose hardware-
based systems that perform the specified functions or acts, or
combinations of special purpose hardware and computer
instructions.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to limit
the invention. As used herein, the singular forms “a”, “an” and
“the” are intended to include the plural forms as well, unless
the context clearly indicates otherwise. It will be further
understood that the terms “comprises” and/or “comprising,”
when used in this specification, specify the presence of stated
features, integers, steps, operations, elements, and/or compo-
nents, but do not preclude the presence or addition of one or
more other features, integers, steps, operations, elements,
components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or steps plus function elements in the claims
below are intended to include any structure, material, or act
for performing the function in combination with other
claimed elements, as specifically claimed. The description of
aspects of the present invention has been presented for pur-
poses of illustration and description, but is not intended to be
exhaustive or limited to the aspects of invention in the form
disclosed. Many modifications and variations will be appar-
ent to those of ordinary skills in the art without departing from
the scope and spirit of aspects of the invention. The embodi-
ment was chosen and described in order to best explain the
principles of aspects of the invention and the practical appli-
cation, and to enable others of ordinary skills in the art to
understand aspects of the invention for various embodiments
with various modifications, as are suited to the particular use
contemplated.

What is claimed is:

1. A method of generating monotonically increasing time-
of-day values in a multiprocessor system, the method com-
prising:

receiving synchronization impulses by a processor of the

multiprocessor system; and

refusing an execution of a read instruction of a time-of-day

value within the processor of the multiprocessor system,
based on the execution of the read instruction of the
time-of-day value being requested after a predefined
time after a synchronization impulse of the synchroni-

5

10

15

20

25

30

35

40

45

50

55

60

65

12

zation impulses, and based on a trigger signal, indicative
of new data received by a related memory system, being
received after the predefined time, wherein the memory
system is external to the processor.

2. The method according to claim 1, wherein the predefined
time is determined based on a smallest latency a data value is
transferable from one processor to another processor in the
multiprocessor system.

3. The method according to claim 1, further comprising:

increasing a counter on every processor cycle time; and

resetting the counter upon reception of the synchronization
impulse.

4. The method according to claim 1, wherein a time flag is
set based on a time after the synchronization impulse is
reached that is equal or greater than the predefined time.

5. The method according to claim 4, wherein the time flag
is reset upon reception of the synchronization impulse.

6. The method according to claim 4, wherein a reject flag is
set based on the time flag being set and the trigger signal being
received.

7. The method according to claim 6, wherein the execution
of'the read instruction of a time-of-day value is rejected based
on the reject flag being set.

8. The method according to claim 6, wherein the reject flag
is reset upon reception of the synchronization impulse.

9. The method according to claim 1, wherein the trigger
signal is indicative of new data received in a memory system
jointly accessible by the processor and another processor in
the multiprocessor system.

10. The method according to claim 1, wherein the read
instruction of the time-of-day value includes a write instruc-
tion of a time-of-day value.

11. A computer system for generating monotonically
increasing time-of-day values in a multiprocessor system, the
computer system comprising:

a memory; and

a processor in communications with the memory, wherein

the computer system is configured to perform a method,

said method comprising:

receiving synchronization impulses by a processor of
the multiprocessor system; and

refusing an execution of a read instruction of a time-of-
day value within the processor of the multiprocessor
system, based on the execution of the read instruction
of the time-of-day value being requested after a pre-
defined time after a synchronization impulse of the
synchronization impulses, and based on a trigger sig-
nal, indicative of new data received by a related
memory system, being received after the predefined
time, wherein the memory system is external to the
processor.

12. The computer system according to claim 11, wherein a
time flag is set based on a time after the synchronization
impulse is reached that is equal or greater than the predefined
time.

13. The computer system according to claim 12, wherein
the time flag is reset upon reception of the synchronization
impulse.

14. The computer system according to claim 12, wherein a
reject flag is set based on the time flag being set and the trigger
signal being received.

15. The computer system according to claim 11, wherein
the read instruction of the time-of-day value includes a write
instruction of a time-of-day value.

16. A computer program product for generating monotoni-
cally increasing time-of-day values in a multiprocessor sys-
tem, the computer program product comprising:

US 9,207,706 B2

13

a computer readable storage medium readable by a pro-
cessing circuit and storing instructions for execution by
the processing circuit for performing a method compris-
ing:
receiving synchronization impulses by a processor of
the multiprocessor system; and

refusing an execution of a read instruction of a time-of-
day value within the processor of the multiprocessor
system, based on the execution of the read instruction
of the time-of-day value being requested after a pre-
defined time after a synchronization impulse of the
synchronization impulses, and based on a trigger sig-
nal, indicative of new data received by a related
memory system, being received after the predefined
time, wherein the memory system is external to the
processor.

17. The computer program product according to claim 16,
wherein a time flag is set based on a time after the synchro-
nization impulse is reached that is equal or greater than the
predefined time.

18. The computer program product according to claim 17,
wherein the time flag is reset upon reception of the synchro-
nization impulse.

19. The computer program product according to claim 17,
wherein a reject flag is set based on the time flag being set and
the trigger signal being received.

20. The computer program product according to claim 16,
wherein the read instruction of the time-of-day value includes
a write instruction of a time-of-day value.

#* #* #* #* #*

10

15

20

25

30

14

